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Despite rapid advances in connectome mapping and neuronal
genetics, we lack theoretical and computational tools to unveil,
in an experimentally testable fashion, the genetic mechanisms
that govern neuronal wiring. Here we introduce a computational
framework to link the adjacency matrix of a connectome to the
expression patterns of its neurons, helping us uncover a set of
genetic rules that govern the interactions between neurons in
contact. The method incorporates the biological realities of the
system, accounting for noise from data collection limitations, as
well as spatial restrictions. The resulting methodology allows us
to infer a network of 19 innexin interactions that govern the
formation of gap junctions in Caenorhabditis elegans, five of
which are already supported by experimental data. As advances
in single-cell gene expression profiling increase the accuracy and
the coverage of the data, the developed framework will allow
researchers to systematically infer experimentally testable con-
nection rules, offering mechanistic predictions for synapse and
gap junction formation.

networks | connectome | neuroscience | C. elegans

There is ample experimental evidence that the connectome,
capturing the neuron-level wiring of a brain, is at least par-

tially genetically encoded. Indeed, while neurons are clustered
into broad classes based on their morphology and function,
these observed differences between cells are known to be rooted
in the differential expression patterns of their genes and pro-
teins (1–10). Consequently, perturbations that alter the genetic
identity of individual neurons can induce significant changes
in wiring (11, 12). Furthermore, developmental neuroscience
has unveiled multiple genetic factors contributing to the for-
mation of neuronal circuits. For example, the connectomes of
Caenorhabditis elegans and higher organisms rely on a combi-
nation of body and wiring localization (13–18), and cell–cell
recognition specificity, for both synaptic (19) and gap junction
(GJ) connections (11, 20, 21). In the mouse retina, proteins,
like connexin-36, play a known role in coupling rods and cones
through GJs (22), and, in D. melanogaster, neurons expressing
the same olfactory receptor converge onto the same set of projec-
tion neurons (23). While these studies offer strong experimental
support for the genetic roots of neuronal wiring, we continue
to lack a general framework to identify the genetic mechanisms
that determine the presence or the absence of specific neuronal
connections (12, 21, 24).

These advances have prompted the development of statis-
tical approaches designed to identify genes involved in neu-
ronal connectivity. At coarser spatial scales, where collections
of spatially proximal neurons are profiled together, data avail-
ability has led to the development of correlative and predictive
approaches that connect regional gene expression and connectiv-
ity in the mouse brain (25, 26). At the neuronal scale, Kaufman
et al. (27) demonstrated a correlation between gene expression
and neuronal connectivity, and Varadan et al. (28) identified
a genetic rule for chemical synapses through an entropy mini-

mization approach. Despite these important advances, existing
frameworks fail to incorporate spatial constraints for synapse
formation. Indeed, past work in mice, macaque, and C. ele-
gans suggests that connection probability decays with spatial
distance between soma (17, 29). Strictly speaking, synapses can
only exist between neurons in physical contact along their sur-
face. This limitation was recognized by Baruch et al. (30) in
their inference of genetic rules, estimating neuronal contact
information from neuronal connectivity itself. Here we can take
advantage of recent high-resolution efforts to map a neuronal
“contactome” in C. elegans, that also offer an accurate consid-
eration of spatial and contact information (31). Notwithstanding
these promising advances, progress toward unveiling the genetic
rules of synapse formation is remarkably slow compared to
the tremendous experimental progress focusing on mapping
the connectome and the gene expression patterns of individual
neurons (32–34).

The gap between experimental and computational progress
raises a fundamental question: Is it computationally feasible to
infer the genetic rules that govern synapse formation from the
available experimental data? For instance, in C. elegans, we wish
to describe the genetic rules that govern the wiring of neurons of
a relatively sparse connectome of N ≈ 300 neurons (32) using
as input the combinatorial expression patterns of m ≈ 20, 000
genes (34). Even if we reduce the genetic complexity to the
binary expression of individual genes, m genes can encode a
very large number (N =2m) of neuronal identities. Hence, as
we try to infer the list of genes whose expression pattern can
encode the observed connectome, we are faced with a heavily
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underdetermined problem: In C. elegans, the combinatorial
expression of m = log2(N )< 9 genes is sufficient to fully
describe the observed connectome. Although humans have N ≈
86 billion neurons (35), and m ≈ 20, 000 genes, the number of
neurons is dwarfed by the combinatorial gene expression space
of size 2m , where the expression pattern of m genes determines
whether two neurons can synapse. Indeed, if only the binary
expression of three genes contributes to synapse formation in
each neuron, they allow for 1/6×m3 =1.3× 1012 combinations,
an order of magnitude larger than the number of neurons in a
human brain, leading again to serious overfitting. We are there-
fore faced with an astronomical search space, and the challenge
to extract meaningful genetic rules in a heavily ill-conditioned
problem of finding them from inherently limited experimental
data.

To overcome these difficulties, here we develop a theoretical
framework to systematically infer the genetic rules that con-
tribute to the formation and maintenance of synapses and GJs
between neurons in contact. We show that these genetic rules can
be systematically extracted from three datasets: 1) a comprehen-
sive map of the connectome, 2) a protein expression atlas of the
individual neurons, and 3) a list of neurons in physical contact.
Finally, we apply our modeling framework to the roundworm C.
elegans. We do so because the C. elegans connectome is believed
to be largely identical across individuals (33, 36, 37), and hence
predetermined by the genetic markers that label each neuron
(5, 20). Yet, the genetic mechanisms that determine which neu-
rons can synapse with each other remain largely unknown even in
this simple and well-studied organism (21). We show that we can
overcome overfitting by restricting our analysis to genes known
to be involved in GJ formation, and developing a spatial connec-
tome model (SCM) to properly account for physical restrictions
for wiring. We demonstrate the utility of the proposed modeling
framework by predicting 19 interactions between innexin pro-
teins responsible for GJ formation, finding that 5 of them are
supported by previous experimental data.

The Connectome Model
We begin with two hypotheses, the first being that each gene
can be in two possible states, expressed (one) or not (zero),
whose combination defines the genetic barcode for each neu-
ron. As we will discuss later, this hypothesis can be relaxed, but
it simplifies the introduction of the connectome model (CM).
The second hypothesis states that synapse formation is gov-
erned by some (unknown) biological mechanism linked to the
gene expression patterns of each pair of neurons (neuronal bar-
codes). We describe each such mechanism as an operator O ,
which inspects the barcodes of two neurons and decides to
facilitate (or block) the formation of synapses or GJs between
them (38).

Consider a hypothetical connectome consisting of seven neu-
rons, A to G, whose connections are uniquely determined by
the expression patterns of three genes (Fig. 1A). The CM con-
sists of a set of rules that encode the possibility of synapses
between genetically encoded sets of neurons (38). As proposed
in previous work, a rule could be an abstract operator O1 that
recognizes the complete genetic profile of neurons C and G,
designating C as a source and G as a destination neuron, and
establishing synapses between them (Fig. 1B). The connections
that result can be either undirected, as in the case of GJs, or
directed, like synapses (SI Appendix, Chemical Synapses). How-
ever, a less specific operator (O2 or O3), that detects only a
subset of the genes, ignoring the expression state of the genes
marked by X, can generate multiple links between two sets of
neurons, like the complete biclique of eight links in Fig. 1D.
Fig. 1 summarizes a key prediction of the CM: Each biological
mechanism that relies on gene expression to initiate synapse for-
mation will generate an imprint in the connectome in the form

A

B C D

E F G

Fig. 1. Genetic labels. (A) The terminal expression profile of seven neurons
(black nodes), involving three genes, expressed (one) or unexpressed (zero).
(B) The formation of links (chemical synapses, gap junctions) are governed
by the expression profiles of the neurons, through biological mechanisms
that have previously been abstracted as operators, Oi (38). In the simplest
case, an operator recognizes the full expression pattern of neurons C and
G and connects them. (C) A single rule or operator can generate multiple
links, if the operator detects the expression of some genes and ignores oth-
ers. Here, X marks the gene ignored by the operator, whether it is expressed
or not. (D) More complex operators that have multiple Xs in them can facil-
itate a large number of links. (E) In the formalism proposed here, we assign
two labels to each operator, one to the source neurons (left) and another to
the destination neurons (right). The labels allow us to represent operator O1

as a link connecting the neurons with the right labels. (F) Even if the same
label is assigned to multiple neurons, the operator O2 remains a simple link
between the two labels. (G) While the operator O3 might appear compli-
cated in terms of the original gene expression data, it has a simple structure
in the label representation.

of a unique network motif, known as a noninduced biclique in
graph theory (39) (see also SI Appendix, Fig. S1), where neurons
of the source set can be connected to neurons of the destina-
tion set. Ref. 39 validated this prediction by showing an excess
of specific large biclique motifs in the C. elegans connectome.
The challenge, which we address here, is how to reverse engi-
neer the genetic rules from the observed network patterns, given
that even a modest number of genetic rules can lead to a tremen-
dous number of network motifs. Furthermore, the genetic rules
can be rather complex when expressed in terms of operators
connecting gene expression patterns (Fig. 1D), rooted in the non-
linear representation of combinatorial expression data. In order
to make the description mathematically tractable, we introduce
genetic labels, allowing us to capture multiple genetic oper-
ators within a single network-based framework. For instance,
we can rewrite O1 as the operator Oab , where we assign all
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participating source neurons the label “a” (Fig 1E) and assign
all destination neurons the label “b” (Fig. 1E). A biological rule
governing neural connections between the source and destina-
tion neurons can be represented by the link a−b between the two
labels.

In this label-based representation, the operators have a simple
form (Fig. 1 E–G), and the complexity of a rule is incorporated in
how genes define the labels. Although some labels can represent
complex gene expression patterns (e.g., Fig. 1D), others can be
very simple. For example, electrical synapses or GJs are intercel-
lular channels formed by two matching hemichannels consisting
of a subset of 25 innexin proteins (40). In order to maintain a GJ,
the innexins forming the hemichannels must be expressed on the
surface of neurons in contact. In our formalism, the simplest rule,
Oab , is then a link between two innexins “a” and “b” expressed
on two neurons forming a GJ. In other words, we assign label
“a” (or “b”) to each neuron if it expresses innexin “a” (or “b”).
In general, GJs can be also heteromeric, requiring a label that
corresponds to the simultaneous expression of two (or more)
innexins.

The labeling of each neuron is summarized in the expression
matrix (X ), where Xia =1 if neuron i ’s expression pattern is con-
sistent with label “a,” and zero otherwise (Fig. 2A). The rule
matrix O summarizes the individual operators as links connect-
ing the labels (Fig. 2B). If two neurons in contact express labels
that are connected in O , then there is a nonzero chance of estab-
lishing a synapse between these neurons. This representation
defines mathematically the CM, that links the brain’s connec-
tome (B) to the expression patterns of the individual neurons
X , through the rule matrix O ,

B =XOXT . [1]

The CM (Eq. 1) is our first key result, formally linking the con-
nectome (B), the expression patterns of the individual neurons
(X ), and the biological mechanisms (O) that govern synapse/GJ
formation in the brain. Eq. 1 is valid for weighted label expres-
sion data as well, where the weights capture the probability that
a given neuron agrees with a given label.

In practice, not all of the genetically allowed connections can
be observed, due to experimental limitations, developmental and
spatial constraints, and neural plasticity. In our formalism, this
implies that O is a stochastic operator with Oab not necessar-

ily being 1 (Fig. 3). For instance, fruit fly inx-2 homomeric GJs
form only between 40% of the neighboring cell pairs (41), leading
to an apparent stochasticity in GJ formation, corresponding to
Oaa =0.4. In the absence of such stochastic effects, Oaa predicts
a complete subgraph of all a label neurons. With stochasticity,
instead of a fully connected subgraph, we expect a community of
nodes connected to each other with density Oaa =0.4 (Fig. 3E).
In other words, O is a weighted matrix, where the weights are the
probabilities that neurons carrying labels “a” and “b” will link to
each other.

Taken together, as the CM (Eq. 1) establishes a direct connec-
tion between the expression profiles of the individual neurons
(X ) and the connectome (B) through genetic rules (O), it allows
us to address several key problems in brain science, listed in the
order of increasing technical difficulty: 1) Map out the connec-
tome: Predict the connectome (B) from gene expression (X )
and the genetic rules (O). 2) Unveil the genetic rules: Predict
the genetic rules (O) behind the connectome from known X and
B . 3) Predict expression patterns: Find the gene expression of
neurons (X ) from the genetic rules (O) and the wiring of the
connectome (B).

Problem 1 is readily solved by Eq. 1, assuming that we know
(some of) the biological mechanisms behind the rules in O . As
we currently lack these rules, in this paper, we focus on the press-
ing issue of solving Problem 2. This choice is motivated by the
fact that, in C. elegans, we have a comprehensive map of its neural
system’s adjacency matrix (B) and extensive (yet somewhat noisy
and incomplete) information on the gene expression patterns of
individual neurons (X ), potentially allowing us to determine the
biological mechanisms encoded in O .

Solving the Connectome Model. Given the connectome B and the
labels X , our goal is to identify the operator O that collects the
biological rules that govern link formation (Problem 2). To illus-
trate the procedure, we use the three rules introduced in Fig. 1
to generate the brain connectome B (Fig. 2C), according to the
label expression X (Fig. 2A). In the occasion of multiple rules
contributing to the same link in the connectome, B is a weighted
matrix, with the weight of each link corresponding to the num-
ber of rules involved. Generally, just by looking at two connected
neurons, it appears impossible to reverse the problem and infer
the genetic rule responsible for each connection (Fig. 2A, neu-
rons C and G). Indeed, the rule could connect label “a” to label
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Fig. 2. The CM. (A) The expression pattern of the neurons A to G are summarized in the label expression matrix X. (B) The operators connecting the labels
can be summarized in the organizing rule matrix O. (C) In the CM, the brain connectome (B) emerges from O and X through the CM Eq. 1. Each time two
labels are connected in O, the corresponding neurons in X can form synapses. Only nonzero elements are shown in the matrices.
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Fig. 3. GJs in the CM. GJs are formed by interacting hemichannels comprising innexin proteins. In the simplest case, a hemichannel is made of a single
innexin, meaning that the expressed innexins can directly serve as labels. (A) Two Drosophila innexin proteins, inx-2 and inx-3, have been found to form
(heterotypic) GJs, resulting in multiple potential neural connections (41). (B) There is evidence that inx-2 can form homomeric GJs, establishing connections
between the neurons expressing inx-2, represented by the self-loop in the figure. (C) Altogether, the two rules (A and B) can be integrated into a rule
network that serves as a genetic template for the GJ connectome. (D) The formalism behind the CM allows for stochastic rules, that is, a weight of
0.8 indicates that 80% of the potential neural connections are present in the brain. This stochasticity can arise from multiple factors, including noisy
or incomplete expression and connectome data, spatial effects, biological constraints, and true stochasticity of neuronal wiring. (E) According to oocyte
experiments (51), the homomeric innexin rule of Drosophila inx-2 has a weight of 0.4, as only 40% of the possible links are observed. (F) Even in the
presence of apparent or true stochasticity, we can capture the GJ connectome using only a few (weighted) innexin rules.

“b,” but could also connect label “a” to label “d.” Even if we had
simultaneous access to the complete list of neural connections
(B) and full genetic labels (X ), inferring the rules responsible
for link formation (O) is mathematically ill conditioned, with
infinitely many solutions of the form

Õ =X+BX+T +W −X+XWXTX+T , [2]

where W is an arbitrary matrix and X+ stands for the Moore–
Penrose pseudoinverse of X , which has the property XX+X =
X (42). We have a unique solution only when X+ =X−1, mean-
ing that the neurons have linearly independent label expression
patterns, which is not expected to be the case in the brain. Oth-
erwise, even if there is no noise in the input data, we do not
expect to find an exact solution, and Õ comes with a least-
square residual error r2 = ‖B −XÕXT‖2> 0. In practice, the
situation is even more difficult because B and X have multi-
ple unknown errors (both false negatives and false positives).
To make progress, we invoke the parsimony principle, search-
ing for the model that accounts for the available data with the
fewest rules in O . A convenient way to mathematically formalize
this is to minimize the objective function with a regularization
parameter α≥ 0,

r2 +α‖O‖2, [3]

where ‖O‖2≡
∑

ij O
2
ij is the square of the Frobenius norm.

When O consists of only zeros and ones, a minimal Frobenius
norm corresponds to the fewest rules or the fewest ones in the
O matrix. As an alternative implementation of the parsimony
principle, we could also select the sum of the absolute values in
O as the norm, related to compressed sensing, also known as
LASSO (least absolute shrinkage and selection operator) (43).
Here, we proceed with the Frobenius norm in order to maintain

the analytical tractability of the problem, and to be able to assess
the significance of the obtained rules. With this, we can find the
optimal O , relying on the results on ridge regression (Tikhonov
regularization) (44), discussed in Methods.

The SCM
The CM assumes that each neuronal connection allowed by the
genetic profile of the neurons will form with a probability dic-
tated by genetics only. Yet, for a synapse or GJ to form, the
neurons must also be in physical contact (Fig. 4A). If we ignore
these spatial constraints, each missing link between remote neu-
rons is taken as evidence against the rule, including links allowed
by the genetics that do not have the opportunity to form as the
neurons do not come in contact (Fig. 4B). Therefore, to increase
the accuracy of the model’s predictions, we must restrict our
analysis to pairs of neurons that do touch each other. This infor-
mation is encoded by the contact matrix C , telling us which
neuron pairs are in physical contact. In C. elegans, the ante-
rior brain contactome (C ) has been mapped experimentally (45),
prompting us to restrict our analyses to the anterior 185 neurons
detailed in ref. 31 and available at https://wormwiring.org. Alto-
gether, 5, 592 neuron pairs are in physical contact, representing
∼ 33% of all pairs, out of which only 601 form GJs.

It is tempting to incorporate spatial constraints into our matrix
representation (Eq. 1) by ignoring each matrix element in B
that is absent in the contact matrix C (Fig. 4C). If we do so,
the obtained truncated matrix has nonexisting entries (Fig. 4C),
and we cannot apply standard matrix operations to it. The näıve
choice of treating each missing link as a zero in the connec-
tome matrix leads to incorrect rules, as illustrated in Fig. 4D.
To address this problem, we represent the connectome B as an
edge list rather than a matrix. In other words, we rearrange the
connectome matrix B (by any, i.e., lexicographic order) into the
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Fig. 4. The SCM. (A) Neurons can only synapse if they are in physical contact. We schematically indicate physical contacts via touching neuron contours in
the figure, and contacting neuron pairs are marked by a one in the matrix C. Note that neurons can be in physical contact with themselves and even form
synapses. (B) Given the lack of physical contact, only a fraction of the genetically allowed synapses are observed. The dashed links in the network, shown
as ones in gray cells in the adjacency matrix below, indicate neural connections that are genetically permitted but are not observed because the neurons
are not in contact. (C) When inferring genetic rules, distant neuron pairs must be ignored in the model (gray cells), as we do not know whether the lack
of connection has a genetic origin or is simply due to spatial constraints. We therefore arrive at a truncated matrix representation, which does not obey
standard matrix operations, and hence is challenging to work with. (D) If we treat all unobserved cells (gray and blank) as zeros, the matrix representation
leads to incorrect rules, as it always assumes the lack of genetic compatibility where there may be some. (E) The edge list representation offers a linear
description that is formally equivalent with the matrix representation. (F) Distant pairs of neurons can be removed from the edge list representation, and,
as a truncated list is still a list, it allows us to uncover the correct rules based on Eq. 5.

connectome vector b=vec(B) (Fig. 4E). Similarly, we rearrange
the rule matrix O into a rule vector o=vec(O). This allows us
to reformulate the bilinear CM in Eq. 1 as a higher-dimensional
linear model

b=Ko, [4]

where K =X ⊗X is the Kronecker product. This, so far equiv-
alent, linear representation allows us to restrict the space of
neural connections to neurons in physical contact, by ignor-
ing the entries in b and K that do not satisfy physical contact
according to the C matrix, resulting in a reduced b′ and K ′

(Fig. 4F). We therefore arrive at the truncated connectome
model describing the SCM, representing our second key result,

b′=K ′o. [5]

This equation can be solved using tools similar to the ones we
used to study the CM, as discussed in Methods. At the end, the
obtained rule weights vector õ can be rearranged into a matrix
format, Õ . If we perform these calculations on the toy model of
Fig. 2 A and C with the indicated spatial constraints, we recover
the exact rules in Fig. 2B, even though we are using only a frac-
tion of the connectome information, that is, only the links that
are between touching neurons. This result suggests that we do
not need complete input data on the C. elegans connectome and
gene expression to make reliable predictions, as we can use Eqs.
5 and 7 to uncover the biological mechanisms O governing brain
wiring even from partial data. Yet, we need to know the genetic
labels, that is, the genetic basis, X , in which the organizing rules
operate. Next, we show how Eq. 5 helps us unveil the biological
mechanism governing GJ formation.

Unveiling the Rules behind GJs
Electrical synapses, or GJs, play an important role in the C. ele-
gans nervous system and muscle control (46). There are 25 genes
involved in C. elegans GJ formation, all of which encode innexin
proteins (collectively called innexin genes, even though not all of
them are named inx∗). We can therefore ignore the expression

patterns of noninnexin genes, limiting overfitting by restricting
the genetic space in X used in our analysis. Currently, there is
published expression data for 18 of the 25 innexin genes in C. ele-
gans neurons (45) The innexin expression data we rely on were
collected by a single group using a consistent method (45), and
we relied on a curated version of the expression data that ensures
the best available representation in terms of zeros and ones (5).
Nevertheless, the data are expected to be enriched with zeros,
resulting both from experimental error and incomplete studies.
These omissions lead to inconsistencies: Although every neuron
class is known to form GJs, about one-third of the neurons have
no reported innexin gene expressed (47, 49). Besides this obvi-
ous data incompleteness, the expression data are also limited
by experimental difficulties of differentiating between individ-
ual neurons within the same neuron class, practically limiting
the resolution of the expression data to neuron classes. With
these data limitations in mind, as a first step, we consider only
the genetic labels linked to the expression patterns of individual
innexin genes.

We begin by applying Eq. 7, using, as input, the innexin gene
expression data (X ) (45), the GJ connectome (B) (33), and
the neuronal contactome C (34, 45), aiming to calculate O ,
describing the genetic rules that govern GJ formation (Fig. 5
and Methods). We set the regularization parameter at its optimal
value α=0.215 (Methods and SI Appendix, Fig. S2), but we find
that our results are qualitatively similar if we rely on any smaller,
nonoptimized α> 0 (SI Appendix, Fig. S6). The elements of
the obtained Õ matrix represent the probability that neurons
expressing those genes form GJs due to this specific genetic rule.
Most of the obtained rules have a small, but nonzero, weight (SI
Appendix, Fig. S3), which is expected due to the chosen Frobe-
nius norm, and also because of weight inflation resulting from
false negatives in the expression data. We must therefore dif-
ferentiate small values from meaningful probabilities. To assess
the significance of the results, we developed a method to per-
form degree-preserving randomization of the connectome (49)
without violating the spatial constraints. Indeed, while keeping
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Fig. 5. Predicted innexin rules. Significant innexin rules inferred for C. elegans GJs, showing only positive rules with a z score of at least 2. Each box
corresponds to an innexin protein in C. elegans. Dark blue links are found to be significant in both connectome reconstructions (SI Appendix, Fig. S4), while
light blue links are significant only in the Cook et al. (33) connectome. Link weights estimate the connection probability. For example, the link between inx-2
and inx-10 has weight 0.66, meaning that the neurons expressing these two innexins establish GJs in 66% of the cases. Note that the observed probability
of GJs between these neurons might change if multiple rules contribute to them.

the node (neuron) degrees unchanged is a standard requirement
of a proper null model (49), we lack methods to perform such
randomization without generating interactions between noncon-
tacting pairs of neurons. We therefore developed a maximum
entropy approach for network randomization with spatial con-
straints, using a subgraph randomization protocol (see Methods),
allowing us to readily determine the z score for each predicted
rule. The z scores can then be used to rank the obtained rules for
validation experiments.

With the standard z > 2 threshold, we find 19 significant wiring
rules, summarized in Fig. 5 (for all z scores, see SI Appendix,
Fig. S3). Five of the 19 rules have been uncovered previously by
the experimental literature, including 1) inx-19–inx-19 (z =3.4)
(46), 2) unc-9–unc-9 (z =3.1) (46), 3) inx-10–inx-11 (z =3.0)
(50), 4) inx-3–inx-3 (z =2.8) (46), and 5) inx-6–inx-6 (z =2.5)
(46), where the boldface font indicates that the interaction is
significant for two different C. elegans connectome reconstruc-
tions (SI Appendix, Fig. S4). Given that no further single innexin
interactions were found in literature, observing all five experi-
mentally supported interactions out of a set of 19 predictions
appears to be highly significant (p≈ 10−5). However, this obser-
vation is tempered by the facts that the experiments relied on
multiple methods: the inx-19–inx-19 interaction was confirmed
by electrically coupling Xenopus oocytes (51), while inx-6–inx-
6 channels have been confirmed by EM reconstruction (52).
The remaining interaction rules are uncovered by the model:
6) inx-12–inx-12 (z =5.6), 7) inx-9–inx-9 (z =5.0), 8) inx-3–inx-
10 (z =3.4), 9) inx-5–inx-10 (z =3.0), 10) inx-8–inx-13 (z =2.8),
11) che-7–inx-17 (z =2.8), 12) inx-8–inx-12 (z =2.6), 13) inx-9–
inx-17 (z =2.5), 14) inx-6–inx-18 (z =2.4), 15) inx-7–inx-7 (z =
2.4), 16) inx-13–inx-13 (z =2.4), 17) inx-13–inx-17 (z =2.4),
18) inx-2–inx-10 (z =2.1), and 19) inx-1–inx-18 (z =2.0), where

boldface again indicates that the interaction is confirmed in both
reconstructions (SI Appendix, Fig. S4).

The obtained interactions offer ground for direct falsifiable
experimental confirmation, for example, by expressing one of
each innexins in Xenopus oocytes and checking for electric cou-
pling. In addition, it is possible to introduce genetic interventions
that, according to our model, are expected to lead to rewiring
in the C. elegans system. The developed framework allows us
to predict the nature of this rewiring: For example, if a connec-
tion between two neurons is due to a single rule, then losing the
participating genetic label on either side leads to a loss of interac-
tion. For instance, our inference predicts that the AINR–ASGL
and AINL–ASGR GJs, present in both C. elegans connectome
reconstructions, are coded solely by the che-7–inx-17 rule, an
interaction found to be significant according to inference on
both reconstructions (SI Appendix, Fig. S4). Therefore, knocking
down any of these genes in the neurons, or pharmacologically
preventing the interaction, is expected to result in the loss of
these two GJs. Note that these predictions are sensitive to
the noise in the input data and the choice of the significance
threshold, particularly since all single-rule GJs originate from
low-strength interactions.

Discussion
Motivated by the need to infer the genetic rules that govern
the wiring diagram of the connectome, here we have introduced
a computational framework that relates the genetic expression
profiles of the individual neurons to the connectome. Although
the connectome and, especially, the neuron gene expression pro-
files remain heavily incomplete and prone to noise, our results
indicate that their joint coverage is sufficient to infer some of
the conjectured interactions that govern GJ formation in the
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C. elegans nervous system. To achieve this, we established a
connection between the gene expression patterns of single neu-
rons and the connectome, through the CM (Eq. 1). As synapses
can only form between neurons that are in physical contact, we
incorporated spatial constraints in our framework, resulting in
the SCM (Eq. 5). The model allowed us to identify 19 signifi-
cant innexin rules behind GJs. As the availability of high-quality
input data increases, the SCM can be extended to capture chem-
ical synapse formation, which follows the same constraints as
GJs (53), helping to illustrate the versatility of the developed
modeling framework (SI Appendix, Chemical Synapses).

Although we utilized the multimodal profiling of C. elegans to
validate specific predictions, the SCM formalism is developed
to meet future needs, in expectation of new connectomes and
detailed genetic profiling methods. Indeed, working with larger
connectomes highlights the importance of incorporating con-
straints, as, in large connectomes, an overwhelming fraction of
neuron pairs are not in physical contact. The presented frame-
work offers guidance for future experiments: To apply SCM to
these systems requires a matched connectome, contactome, and
transcriptome, meaning that, for each cell, we need to know its
connections, its physical contacts, and its gene expression. Partial
neuronal transcriptomes and connectomes have been published
recently for fly (54–56) and zebrafish (57, 58). However, connec-
tivity and gene expression were not profiled jointly; thus these
datasets cannot offer cellular-level predictions. In an alternate
application, future work could utilize the CM to infer genetic
correlates of projectomic rules, where the B matrix can be a
projectome, such as between neuronal areas, and X remains
a label-transformed transcriptome, while O represents genetic
compatibility rules that promote projections from one region to
another. This application may require us to alter the subgraph
randomization procedure to account for a weighted connectome,
which could be achieved by redefining the maximum entropy
constraints (59, 60).

The SCM, together with the inferred innexin rules, allows
us to predict potential changes in neural wiring if gene expres-
sion is altered via knockout experiments or silencing. Yet, a
knockout experiment of an innexin is only informative if the
mutant is viable. The individual loss of several innexins (includ-
ing inx-3, inx-12, inx-13, inx-14, and inx-22) is known to be lethal
(46), limiting knockout experiments to nonessential innexins,
unless, maybe, the experiments can be limited to specific neurons
only. Temperature-sensitive alleles provide an alternative way
to experimentally modulate the expression of essential innex-
ins, keeping the innexins functional during development, and
disabling the corresponding GJs at restrictive temperatures (61,
62). Another possibility would be an exercise in edgetics, that is,
disrupting specific protein–protein interactions using drugs tar-
geting innexins (63), and detecting the resulting change in the
connectome. Our model could also be used to predict how the
brain is rewired in the food-deprived, dormant state of the C.
elegans known as the dauer stage. Functional studies indicate a
substantial remodeling of behavior which anticipates a substan-
tial rewiring of the GJ connectome, with profound impact on
synaptic partner choices. As a prerequisite, dauer-stage neuron
gene expression data have been made available recently (47).

Finally, as the SCM establishes connections between brain
connectivity and genetics, we can assess whether neurons are
primarily connected based on genetic similarity (SI Appendix,
Spectral Interpretation of the Wiring Rules). The diagonalization
of the rule matrix (O) leads to a minimal set of abstract rules,
given by the eigenvalues. If all eigenvalues are nonnegative, that

indicates that neurons will form synapses with other neurons
of similar expression profiles. We find, however, at least four
negative eigenvalues, supporting a complex genetic organization
(SI Appendix, Fig. S5), with a strong presence of genetic het-
erophily, indicating that GJ formation relies strongly on genetic
complementarity besides similarity.

Methods
Ridge Regression. The optimization problem (Eq. 3) can be solved analyti-
cally as (44)

Õ = X+(α)BX+T (α), [6]

where X+(α) = (XT X +αI)−1XT . In the α→ 0 limit, the solution is Õ =

X+BX+T , yielding the best residual error (r2) at the expense of the sim-
plicity of O, prone to overfitting in the presence of errors. This limit is also
sensitive to changes in B; therefore, α→ 0 is only appropriate when the
input data are exact. In contrast, α→∞ leads to the estimate Õ∝XT BX,
coinciding with the naı̈ve assumption discussed in ref. 28, yielding a poor
r2, being prone to underfitting. Here we find the optimal α, following the
suggestion by Wahba and coworkers (64), proven to be optimal in a gen-
eralized cross-validation scenario, corresponding to α that minimizes r2/τ2,
where τ = Tr(I−KK+(α)), and K = X⊗X is calculated using the Kronecker
product. Eq. 5 can be solved similarly, leading to

õ = K′+(α)b′, [7]

with K′+(α) = (K′T K′ +αI)−1K′T , at the optimal α, minimizing r2/τ2, with
τ = Tr

(
I−K′K′+(α)

)
(SI Appendix, Fig. S2).

Subgraph Randomization. We start with a graph G0 and a subgraph G1, and
we aim to sample, uniformly, the space of subgraphs of G0 with (approxi-
mately) the same subgraph degree sequence as given in G1. This represents
a constrained version of the traditional degree-preserved randomization,
where G0 is a complete graph (65), as all interactions that are not in G0

appear as hard constraints and are excluded from the randomized net-
works. Here, G0 represents the list of neurons in contact that could, in
principle, establish a GJ, and we randomize the network of existing synapses
without violating the known neuronal contact structure (C). We use a max-
imum entropy approach, maximizing the entropy of the random network
ensemble defined as S =−

∑
G P(G) ln P(G). The average subgraph degree

of each node in G1 is 〈ki〉=
∑

G P(G)ki(G), which we keep fixed at the orig-
inal value, ki . The probability of a given graph instance is P(G) = e−H(G)/Z,
where H =

∑
i βiki(G), and the probability of having a link between nodes

i and j is expressed as pij = 1/1 +αiαj , where αi = e−βi . The average sub-
graph degree of a node is then given by 〈ki〉=

∑
j,(i,j)∈G0

1
1+αiαj

, and the

optimal α can be found iteratively, with the update rule

α
′
i =

1

ki

∑
j,(i,j)∈G0

1

αj + 1/αi
, [8]

starting from the initial condition α(0)
i ≡ 1 leading to α(1)

i = Ki/2ki , where Ki

is the full node degree in G0. We perform a hundred iterations to estimate
the optimal α, allowing us to calculate the mean and the variance of the
randomized matrix ensemble. Due to the linearity of the SCM solution, these
yield a z score for each inferred wiring rule (through the first and second
moments), without the need of explicitly generating random samples from
the ensemble.

Data and Code Availability. For reproducibility, we provide code and pro-
cessed data at DOI:10.5281/zenodo.4027588. All study data are included in
the article and SI Appendix.
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